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The [2,3] sigmatropic rearrangement has been predicted by MO
theoretical calculations (MINDO/3) to be preferred to the [1,2]
shift in a-allyloxycarbene giving 3-buten-1-al, The activation
energy for the former process is governed by the non-neighboring
two center terms, indicating that the reaction can be replaced
by the [1,2] shift under increased steric demand as observed in

an 7,Y¥-dimethylallyloxycarbene,

We have recently reported that a wide range of allyl and benzyl groups
undergoes rearrangement from the oxygen to the carbenic center in the aryl-
a~-alkoxycarbenes generated by the photolysis of l-alkoxytriptycenes.z) When
1-(7,r-dimethylallyloxy)triptycene was irradiated in an inert solvent, the main
product was aryl ketone 1 in which no allylic "inversion" had taken place,
showing the occurrence of [1,27] shift rather than [2,3] shift at least in the

!, Y-dimethylallyloxycarbene 3.2) The result offers a striking contrast with
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allylthiocarbenes 3 which rearrange without exception in a [2,3] fashion.>)
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It is usually the case that [2,3] shifts are favored over [1,2] shifts in

a number of intramolecular electrophilic migrations.u) The former is an allowed
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reaction and the latter is forbidden in terms of the orbital symmetry rule for
the concerted reactions.s) It was therefore deemed of special interest to
scrutinize theoretically the pathway by which the migration of an allyloxycarbene
takes place.

The MINDO/3 calculations were carried out for the elucidation of the
reaction surfaces interrelating a-allyloxycarbene in the singlet electronic state
and ground state 3-buten-l-al by means of a HITAC 8800/8700 computer. The
MINDO/3 program written by Bingham, Dewar and Loé) and obtained from QCPE7) was
used to calculate the minimum energy bond lengths and angles. The reaction
coordinates were defined by angle (6) £Z0CC for the [1,2] shift as shown in Fig,
1. The theoretical structure for the starting carbene molecule was obtained by
minimizing total energy with respect to © at around 20°. The reaction is
represented by gradual increase in 6 in steps of 10° in general and more closely
near the transition state, At each step of fixed & , the energy of the molecule
was minimized with respect to all the other degree of freedom. At @=ca. 130°,
we arrive at another energy minimum corresponding to the end product. For the
[2,3] shift, distance r between the terminal carbon of the allyl moiety and the
carbenic carbon was taken as a measure of the progress of the rearrangement (see
Fig. 2). By starting at r = 4,49 & which is the equilibrium distance between
the two carbon atoms of interest in the ground state a-allyloxycarbene, we

1.49 &,

complete the [2,3] migration when r
The potential energy curve where heats of formation of the cuﬂéo system were
plotted as a function of the reaction coordinate is given in Figs. 1 and 2
together with the dissected energy terms EAg and EAgN.s) We note the following
characteristic features. Firstly, the activation energy for the rearrangement is
42,5 and 31.5 kcal/mol for the [1,27] and [2,3] shifts, respectively. The latter
is decidedly lower than the former process, although the alternative result,
namely the "retention" of the 7,Y-dimethylallyl group migration has been obtained

2) Secondly, the [1,2] sigmatropy is a typical "Wittig rearrange-

experimentally.
ment"” in that the migrating allyl group is pseudo-cation at the earlier stage of
the reaction. The observed allyl and benzyl migration and resistance of simple

alkyl and aryl groups to rearrangement are consistent with this idea of electro-
philic rearrangement.z) Thirdly, it is apparent from the shape of the curves in

Fig. 2 that the transition state is considerably reactant-like in the [2,3]
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shift; the transition state is reached when the original 0-allyl bond still has
the bond order of 0.85 and the new C-C bond is formed only to 0.2 unit. This is
reasonable for an exothermic reaction requiring relatively small activation
energy.9) Thus the [2,3] shift is expected to be easily amenable to non-bonded
interactions in the transition state which has a five-membered ring structure.
It may well be that the transition state for the [2,3] rearrangement will be
raised energetically by introduction of two methyl groups at the terminal
position of the allyl group as in the 7,)-dimethylallyloxycarbene, while that
for the [1,27] shift is obviously rather indifferent to this effect. The two
rearrangement paths can be better illustrated by the changes in the two center

energy terms along the reaction coordinates. The potential energy curve is
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quite similar to the repulsive EAg term in the [2,3] migration (Fig. 2) and is

N

practically governed by the E,; term in the [1,2] rearrangement (Fig. l).a)

Last of all, we point out that selectivity for [2,3] shifts is extremely
high in allylthiocarbenes and even the 7,r-dimethylallyl group migrates in 2 via
the [2,3] process.3) One of the origin for this different behavior may be found
in the longer C-S bond distances as compared to the corresponding C-0, This
would possibly decrease the non-bonded repulsion in the cyclic transition state
for the [2,3] migration, Furthermore, as the forming C=S bond is weaker than the
C=0, these less exothermic reactions will have a late transition state., A

maximum of the EAg vs. reaction curve will be shifted to the product side, and

NN

contribution of the EAB term to the total energy of the transition state could

be less important in the thiocarbene rearrangements.lo)
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